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The marginal separation of a laminar incompressible boundary layer on the line of 
symmetry of a three-dimensional body is discussed. The interaction itself is taken 
to be quasi-two-dimensional but the results differ from those for a two-dimensional 
boundary layer in that the effect of the gradient of the crossflow is included. Solutions 
of the resulting integral equation are computed for two values of the additional 
parameter, and comparisons made with an analytical prediction of the asymptotic 
form as the length of the separation bubble tends to infinity. The occurrence of the 
phenomenon is confirmed by an examination of the results of an existing numerical 
integration of the boundary -layer equations for the line of symmetry of a paraboloid. 

1. Introduction 
In what is now regarded as a classic paper, Stewartson (1970) showed that it was 

impossible to remove the Goldstein (1948) singularity at separation in a two- 
dimensional laminar boundary layer in an adverse pressure gradient by means of a 
triple deck. This means that in general the notion of an attached flow in which viscous 
effects are confined to a thin layer in the neighbourhood of the body is inappropriate, 
and in particular that, when the flow is subsonic and the body is bluff, the external 
inviscid flow is given by Kirchhoff free-streamline theory (Sychev 1972 ; Smith 1977). 
For a supersonic flow the analogous configuration is the self-induced separation 
discussed by Stewartson & Williams (1969). If, however, the separation is marginal, 
in the sense that the skin friction just vanishes but immediately recovers, Stewartson, 
Smith & Kaups (1982) have shown that an interaction region centred on the 
separation point x,* is possible and that the discontinuity in gradient of the skin 
friction at this point is smoothed out in a region of lateral extent O(1B-i). The authors 
had in mind the flow of a uniform stream of speed U ,  past a blunt-nosed 
two-dimensional airfoil of chord length I at a critical angle of incidence, where 
R = U ,  1/v is the Reynolds number and is assumed to be large. They showed that 
in the interaction region, of triple-deck form, the non-dimensional skin friction 
satisfies a nonlinear integral equation involving an arbitrary parameter I', which the 
authors interpreted as being proportional to the excess of the angle of incidence over 
the critical angle. Certain positive values of r admit solutions with a region of 
reversed flow that is of finite length in the variable &x*/l,  where x* measures distance 
along the airfoil, and the authors showed that for given 0 < r < 2.76 the solution 
is not unique. For r > 2.76 there is no solution, a fact that prevents a possible 
continuous transition from the attached flow under consideration to a Kirchhoff 
free-streamline flow. Had r tended to infinity with the length of the separation 
bubble, the flow upstream and downstream of the interaction region would have been 
able to support a skin friction that was well below marginal. The integral equation 
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was further studied by Brown & Stewartson (1983, hereinafter referred to as I), where 
the results of the earlier authors regarding non-uniqueness were confirmed, and the 
asymptotic form of the solution obtained as the non-dimensional length X, of the 
separation region tended to infinity. Solutions of the unsteady form of the integral 
equation have been obtained by Smith (1982), who discussed the relevance of the 
breakdown that he finds at finite time to the occurrence of dynamic stall. 

The present investigation extends the results of I to the marginal separation on 
the line of symmetry ofa three-dimensional body at  angle of incidence a, in a uniform 
stream. The phenomenon is evident in the computations of Cebeci, Khattab & 
Stewartson (1980) for the boundary layer near the nose of a paraboloid. When 
a, = 40" the streamwise skin friction dips linearly to zero at  one point and then 
becomes positive again with a rapid increase from a negative to a positive gradient. 
However, when a, = 41" the separation is catastrophic and terminates the com- 
putation (see also Nishikawa & Yasui 1984 for the additional effects of slenderness). 
Here we examine the neighbourhood of this marginal separation point and study the 
integral equation appropriate to a two-dimensional interaction, which differs from 
the equation considered in I in that it contains a parameter c1 measuring the direction 
and strength of the gradient of the crossflow. It would have been desirable to have 
allowed the interaction itself to have been three-dimensional, and indeed it is not 
difficult to set up the relevant equations. However, as the solution was not carried 
out for the more general case, the simpler situation is considered ab initio. The 
resulting quasi-two-dimensional configuration has some features in common with the 
study of Smith (1978) of the separation of a vortex sheet from a non-slender body 
in which a crossflow is accounted for but the appropriate triple-deck is two- 
dimensional. In fact there have been few fully three-dimensional triple-deck 
calculations. Smith, Sykes & Brighton (1977) considered a two-dimensional boundary 
layer encountering a three-dimensional hump, but subsequently linearized the 
governing equations, as did Smith & Gajjar (1984) in their discussion of flow past 
wing-body junctions. The calculations of Vatsa & Werle (1977) for supersonic flows 
over a swept wing were quasi-three-dimensional. Viscous-inviscid interactions on 
axisymmetric bodies have recently been studied by Kluwick, Gittler & Bodonyi 
(1984) for supersonic flow and by Duck (1984) for subsonic flow. 

The plan of the present paper is as follows. In $52 and 3 we present the equations 
and describe the Goldstein solution upstream and downstream of the separation 
point. This was felt to be desirable as, unlike the two-dimensional situation, the 
boundary layer downstream of this point must be considered in two parts with an 
inner and an outer Goldstein region. The interaction region at x,* smoothes out the 
discontinuity in the non-dimensional streamwise skin friction, which is of the form 
T ~ ( x , * - x * ) / Z  as x*+z,*- and T ~ ( x * - x , * ) / Z  as x*-+x:+, where T~ and T~ are constants. 
In  $4 the interaction region is discussed, and the relevant integral equation, which 
reduces to that of I as T ~ - + T ~ ,  is obtained. Numerical solutions of the equation are 
derived in $5 for the values h = 0.75 and 1.25, where h = T ~ / T ~ .  These are more 
difficult to compute than for the case h = 1 as the boundary conditions for the 
integral equation are no longer symmetric in z*-z,*. Thus the parameter r of I is 
replaced by two related but unequal parameters r,. A non-uniqueness similar to that 
of I is again evident, and it is found that, as X,, the length of the separation bubble, 
tends to infinity, r+ + 00 if h > 1 but r, +- 00 if h < 1. However, C + O ,  as does 
r i n  I. 

Asymptotic solutions supporting the predictions concerning r, are presented in 
$6, where in addition it is shown that the solution of the integral equation is 
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FIQURE 1. Illustration of the solutions of (1.1)  for the case h < 1. The case A > 1 is similar. 

approaching the same limit solution discussed in I for the case A = 1, as indicated 
by the numerical work. In $7 we consider the application of the theory to the 
calculations of Cebeci el al. (1980), which, i t  is shown, correspond to the situation 
A <  1. 

Interpretation of the constants r, is less obvious than in the case A = 1, when they 
are equal and may sensibly be related to the angle of incidence. We find that, as the 
distance X from the separation point, defined by X = &(x* -.,*)/I, becomes large, 
the effect of the interaction decreases, and the suitably scaled skin friction A ( X )  
satisfies the equation 

dA 
dX 

A - = A X -  (1 - A )  A .  (1.1) 

Equation (1 .l) has a saddle point at  A = X = 0, and solutions are sketched in figure 1, 
where the constants GI and G, are used for solutions respectively above and below 
the line A = AX. Thus 

( A + X ) ( A - A X ) A  = G I ,  ( A + X ) ( h X - A ) ’ = G , .  (1.2a, b )  

When G, > 0 solutions proceed from X = -a, where A x - X ,  to X = + 00, where 
A x AX, in a regular manner with the flow attached. For these solutions the angle 
of incidence is below critical. When G, < 0, A possesses a classical Goldstein 
square-root singularity at the point S,, and catastrophic breakdown occurs. The 
interaction modifies the situation of figure 1 and, more importantly, bridges the gap 
between solutions with G, < 0 and those with G, > 0. It enables the question to be 
asked ‘How negative may G, be and how positive may G, be for this bridging still 
to be possible ? ’ A strongly negative G, means that the skin friction is significantly 
below its Goldstein value far upstream, while a strongly positive G, means that it 
is well below the corresponding value far downstream. Indeed 

as X+- 00 GI 
(-X)* (1 +A)A 

A x -X+ (1.3a) 
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and (1.3b) 

We will ignore the solutions on which G, is negative, as these correspond to already 
separated flows; examples are noted in I and are more extensively discussed by 
Rhyzhov & Smith (1985). When the terms due to the interaction are included in (1. l ) ,  
A again has the asymptotic forms of (1.3a, b) ,  but instead we write, by analogy 
with I, 

A x -X-- r- a s X + - m ,  ( 1 . 4 ~ )  
2( - X)A 
P 

A x AX-& as X + C O ,  (1.4b) 
2X'lA 

so that significantly positive r, would perhaps give a possibility of a match with a 
grossly separated Kirchhoff free-streamline solution. The parameters r, , which were 
equal in I, are here unequal but related. Equation (1.1 ) represents the limit I'f +- 00.  

At first i t  might appear that  a breakthrough has been made in the search for 
a continuous transition from an attached inviscid solution to a Kirchhoff free- 
streamline solution because, when A > 1,  r+ + 00 as X, + 00, and therefore the flow 
downstream of the interaction region, with which this solution must match, can 
support a skin friction that is an order of magnitude lower than that predicted by 
the leading-order Goldstein solution. However, when A > 1 this effect on the 
downstream flow is, in terms of Reynolds number O(R--!(l+llA)) and therefore small. 
In  addition, we have been unable to  find examples of a flow along a line of symmetry 
with h > 1, corresponding to  an influx of the secondary velocity, except for the 
favourable-pressure-gradient situations of Stewartson & Simpson (1982) and Cebeci, 
Stewartson & Brown (1983), to  which form of singularity this theory does not apply. 
Also we have not considered the limits h+O and A+m, which promise to be of 
mathematical if not of great physical interest. 

2. The geometry and the equations of motion 
We consider the flow of an incompressible fluid of kinematic viscosity v in the 

neighbourhood of the line of symmetry y = z = 0 on a surface y = 0, and to avoid 
undue complication we shall assume that near the point of marginal separation S on 
the line i t  is sufficient to consider the body to be plane. Now the solution of the 
boundary-layer equations along the line of symmetry may be calculated independently 
of the flow over the rest of the body, since the pressure gradients are prescribed, but 
this is not true for the solution of the Navier-Stokes equations because of the pressure 
gradient normal to the line of symmetry. However, if we restrict ourselves to a 
two-dimensional interaction so that the induced pressure gradient is independent 
of z ,  we may confine our investigations to the plane z = 0. We let 1 be a typical length, 
say the distance of S from an upstream stagnation point on this line, let U ,  be the 
uniform speed a t  infinity of the fluid, and take Cartesian coordinates (12, ly, 1%) with 
origin at S and corresponding velocity components 

Urn{+, y) + 0 ( z 2 ) ,  ' U k ,  y) + 0 ( z 2 ) ,  z 4 5 ,  y) + 0(z3)1, ( 2 . l a )  

and pressure PUZ,{P(Z, y) +;Z2s(4 + 0(z4)1. (2.lb) 

Here u, v, w and p will, in the interaction region centred on S, differ from their 
boundary-layer values, but s (x)  will not, since the perturbation to the pressure is 
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assumed to be independent of z .  Thus s is determined from the potential flow and 
is independent of the normal coordinate y .  This means that for our purposes it is 
sufficient to consider the NavierStokes equations in the limit z+O as 

divq+w = 0 ,  (2 .2a)  

( q * V )  q = - v p  + R-’ v2q, 

q*VW+w2 = -s+R-’V2w, 

(2 .2b)  

(2 .2c)  

where s is given. Here q = (u, w), all the vector operators are two-dimensional in the 
plane of symmetry (2, y ) ,  and R = U ,  1/v is the Reynolds number, assumed to be 
large. 

In the following we take R B 1 and, except when x is within a distance O(R-k) 
of S, (2 .2)  reduce to the conventional boundary-layer equations. In this region an 
interaction takes place between the boundary layer and the outer inviscid flow and 
the solution is of triple-deck form. However, we first set out the relevant properties 
of the flow upstream and downstream of S ,  where the solution in the boundary layer 
of thickness O ( R f )  in y is controlled by the external inviscid flow {u,(x), 0, w,(x)}. 
This is required to establish the conditions that are to be satisfied by the solution 
in the interaction region, which must match with the Goldstein solution upstream 
and downstream. In I the Goldstein skin friction was symmetric about S, but this 
is not so in the presence of crossflow. 

3. The solution upstream and downstream of the marginal 
separation point 

The flow that approaches S,  the point of zero streamwise skin friction, from 
upstream is a standard viscous boundary layer of thickness O(R-t). We do, however, 
make the assumption that, to leading order, the skin friction 7 vanishes in a regular 
fashion at S and that the Goldstein square-root singularity is absent. In fact 7 a 1 x I 
both as x+OT, and the interaction region centred on S serves to smooth out this 
discontinuity in slope. If, either upstream or downstream of S, the skin friction 
contains, at any order, non-integral powers of x as I x I + O ,  it is necessary to divide 
the boundary layer into its outer and inner Goldstein regions. In the outer region 
the appropriate variables are x and H y ,  and in the inner they are I x 1: and H y /  I x 1;. 
If the inner region is unnecessary, because the solution in the outer region satisfies 
the boundary conditions on the wall, we shall term this a regular Goldstein expansion. 
In the following we shall ask, at least to the order in I x 1 that has any influence on 
the interaction region, that the solution upstream of S is regular. However, we shall 
find that the interaction region forces the solution downstream of it to be singular 
and require both an inner as well as an outer Goldstein region. This did not occur in 
the two-dimensional case of I, where the boundary-layer flow was symmetric about S. 

In the boundary layer that approaches or leaves S we take x = O ( l ) ,  u = O ( l ) ,  
w = 0(1) and set 

in (2 .2)  and let R-t 00 to obtain the conventional boundary-layer equations for a line 

au av au au ap a2u -+-+w=o ,  u - + v - = - - + -  ax ay ax a y  ax ay2’ 

of symmetry: 

ap aw aw a2w 
0 = --, u - +  v-+w2 = --s+-, 

ay ax ay  ay2 

(3 .2a ,  b )  

( 3 . 2 c , d )  
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for which the boundary conditions are 

u =  V = w = O  on Y = O ,  

u+ue(x), w+w,(z) as Y-too, 
(3 .3a)  

and also _ _  = Ue(Z) u;(x), - 8 = ue(x) W&) + wE(z). (3.3b) 

For the outer Goldstein solution that approaches or leaves S we allow for the 
possibility of an inner flow by not requiring that the no-slip condition is satisfied at 
all orders of the expansion. We expand u, V and w in powers of x with coefficients 
that are functions of Y as follows: 

ax 

u = u o ( Y ) - x { v ; ( Y ) + W , ( Y ) + p u ; ( Y ) }  

(3 .4a)  

V = V,(Y)+pU,( Y)+x{V,(  Y ) -p (2V; (  Y ) +  w,( Y))-p”;( Y)}+o(x ) ,  (3.4b) 

w = WlC Y) + 4 W , (  y ) - p W ; (  Y ) } + 0 ( 4 ,  (3.4c) 

p = P0+P1x+~P,x2+0(x2) ,  8 = Q,+o(l) .  (3.4d) 

Here Q2 and the Pi are given constants, and Uo( Y )  and W,( Y )  are the streamwise 
and crossflow velocity profiles at  S and are determined partly by the history of the 
boundary layer and partly, as we shall see below, by requirements of regularity of 
the successive terms in (3.4). Also, p is a constant, to be chosen later, which will 
have a different value according as x 5 0. We write 

-+x2{v;(Y)+ W,( Y ) - 2 p (  V l (  Y)+ W;( Y))+U,”( Y)}+o(x2) ,  

with a, > 0, where in addition it is assumed that Uo( Y)+u,(O), W,( Y)+w,(O) as 
Y+m. It may be noted that (3.4a-c) satisfy the continuity equation of (3 .2) .  

When V, is determined from (3.2b) subject to the conditions Vl(0)  = Vi(0) = 0, so 
that ( 3 . 4 ~ )  satisfies the no-slip condition to O ( x ) ,  the requirement that V, is regular 
at Y = 0 leads to the following restrictions on U,( Y) : 

a, = P,, a3 = a* = 0, a5 = - 3a, c l .  (3.6) 

In addition, the constant of integration in the equation for V, is chosen, for 
convenience, to make VY(0) = - c l ,  so that, for small x, the streamwise skin friction 
T is such that T x -pa,x. 

The equation for W, is obtained from (3 .2d) ,  and implies restrictions on the cross- 
flow velocity profile W,. These are 

~2 = Q 2 9  c3 = 0 ,  cp = c;+a,p ,  (3.7) 

where p = W,(O), which is not necessarily zero. Finally, if V, is to be regular with 
V2(0)  = 0 it is necessary that, in addition, 

U 6  = 2a,(P2-2Q,), a, = 0 (3.8) 

and _ _  1 a 8 = 1 3 2  3 c 1 + a 2 ( a - $ p ) ,  (3.9) 
9 a2 

where 01 = VL(0). 
To summarize thus far, we see that, if the assumed forms (3.4) are to be regular 

for small Y ,  have zero normal velocity on Y = 0 and satisfy the no-slip condition to 
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0(1) in the crossflow and to O(x)  in the streamwise flow, then U,, and W ,  have only 
a2 and c1 arbitrary up to and including the terms O( Y E )  in U, and O( Y4) in W,. This 
is on the assumption that p ,  a and p are given, the reason for which is now explained. 

Let us suppose that on the upstream side of S the flow is a regular expansion with 
u(0)  = w(0) = 0 and does not require, at  least to the order in x considered here, an 
inner Goldstein expansion. This implies that /3 = pc,, a+P = $a2, and, if the skin 
friction as x+O- is -71x, so that p = T1/a2, then (3.7) and (3.9) lead to 

c4 = c;+c171, f3 = 7t-Qc 3 1  7 1 +*;, 
9 a2 

(3.10) 

and c4 and a8 are determined in terms of the oncoming-flow properties a2, c1 and 71. 

Downstream of the interaction region we assume that the flow is also described by 
expansions of the form (3.4), but with a different value of p. The analysis up to (3.9) 
is still valid, and so are the relations (3.10) on the coefficients of the separation profiles. 
We note that (3.7), (3.9) and (3.10) lead to 

(3.11) 

If we now take p = -72/a2 (72 > 0), so that the flow to the right of the marginal 
separation region has a skin friction that is linearly increasing downstream, we see 
from (3.4a, b )  that u(0) = w(0) = 0 only if 7: = 7; and ~ ~ ( 7 ~  +72) = 0. This means that 
the solution downstream of the separation region can have a regular Goldstein 
expansion only if el = 0 with 7, = 72, which is the zero-crossflow case discussed in I. 
However, if c ,  =I= 0, as we are assuming here, an inner Goldstein expansion is required 
in which the no-slip conditions are satisfied and which, as we shall find, determines 
the value of 72. We note that we are disregarding the case 72 = - 71, in which situation 
a regular Goldstein separation without reattachment occurs. 

In the inner layer we write, for x > 0, 

(3.12) 

(3.13) 

and expand f and g in powers of ( with coefficients that are functions of 7. It is 
straightforward to calculate these functions as far as f, and g4, as they are polynomials 
in 7 that may be obtained by writing the expansions of the terms of (3.4) with 
p = - 7,/a2 for small Y in terms of 7. However, the equation for g5 has a complementary 
function which leads to a solution (with g;(O)  = 0 to make w = 0 on the wall) that 
includes a contribution O ( 7 )  for 7 % 1 that matches with the term O ( x )  in (3.4a). It 
may then be verified that the corresponding solution for fa with f6(0) = fi(0) = 0 gives 
a match with the appropriate terms in (3.4) provided that 

T2 = ‘T1-C1. (3.14) 

This relation, which, since 72 > 0, implies that 71 > cl, between the gradients of the 
skin friction as x+O- and x+O+, together with the confirmation that the no-slip 
condition is satisfied, is the final property of the Goldstein solution required for the 
discussion to follow of the interaction region. 
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4. The interaction region 
As in I, the appropriate streamwise scale for the interaction region centred on x = 0 

is x = O(R-4). In  the normal direction the flow is divided into three decks; in the main 
deck Y = 0(1), as in the boundary layers immediately upstream and downstream, 
in the upper deck Y = O(&), so that x and y are of the same order of magnitude, 
and in the lower deck Y = O ( R 4 )  with the result that Y /  I x 1; is of order unity, as 
required for a match with an inner Goldstein region. 

To discuss the interaction region we set 6 = R-b and 

(4.1) x = ax, 
in (2.2), so that in the main deck the appropriate variables are X and Y, and the 
required expressions are easily found to be of the form 

u = U,( Y )  -6X( v;( Y )  + W,( Y ) )  -+PXX"( v;( Y )  + W2( Y ) )  

v =  V1(Y)+SXV2(Y)-A'(X) U o ( Y )  

+SA(X) Ui( Y)+6[f (A2+y)  Ui(  Y ) - X A ( X )  ( V ; ( Y ) +  W;( Y ) ) ] + o ( ~ ~ ) ,  (4.20,) 

+S[XA'(X)  W,(Y)+(XA)' v;( Y ) - A ( X ) A ' ( X )  u;( Y)]+o(S) ,  (4.2b) 

w = W1(Y)+6XW2( Y)+SA(X)  W;( Y)+o(S) ,  ( 4 . 2 ~ )  

p = Po + 8P1 X + V2P2 X 2  + d P ( X )  + ~ ( d ) .  (4.2d) 

The expressions (4.2) are analogous to those in the main deck of I, but require some 
explanetion. The first three terms of (4.2u, d )  and the first two of (4.2b, c) are the terms 
of (3.4) with p = 0, as these are common to the flow upstream and downstream of 
the interaction region so are written explicitly in (4.2) for convenience. The functions 
A ( X )  and P ( X )  arise from the interaction and are to be found and must be such 
that (4.2) matches with (3.4) as I X I -+ CO. This means for example that 

The constant y in ( 4 . 2 ~ )  is arbitrary, and in I was interpreted as a measure of the 
amount of increase over the critical angle of incidence for marginal separation that 
was possible. It is not clear that it plays precisely that role here, as this seems to be 
taken over by another constant of integration, which is identical with y only in the 
two-dimensional case. This point, which is considered to be fairly minor, is mentioned 
again a t  the end of the section. 

Since (4.2a,c) do not satisfy the no-slip conditions on Y = 0 an inner deck is 
necessary, and as in I it is convenient to write the solution there as that in the main 
deck plus a correction 0(d2) in u, and O(6) in v and w. Thus, if the correction to u in 
(4.2) is 62B(X,  P) and to v and w, S8(X,  P) and S w ( X ,  p) respectively, where 

Y = &B, (4.4) 
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then it may be shown, from (2.2), that 

a0 a B  =+n+ w = 0, 

a0 a2O 

rn’ ax ti2 P -+a2 BP = - P ( X ) +  

with boundary conditions 

O(X, co) = P(X,  co) = 0, 

and 
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(4.5a) 

(4.5b) 

(4.5c) 

(4.6~) 

(4.6b) 

in order that (4.2) plus its correction may satisfy the no-slip conditions. As X+- 00 

it is sufficient a t  present to assume that 

aO -+ W + o .  ax (4.7) 

The Fourier transform of (4.5b) is Weber’sequation, and there is aunique exponentially 
decaying solution that satisfies the boundary conditions. Differentiation of (4.5~) with 
respect to X, addition of (4.5b) and subsequent differentiation with respect to pleads 
to Stewartson’s (1970) problem for (see the Appendix to that paper), of which an 
acceptable solution exists only if a certain relation holds between P and A. It is, in 
this case, that, with r2 = T,-c,, 

(4.8) 
X 

The existence of the integral on the left will be verified when the equation for A is 
found below. 

The upper deck leads to a second condition between A and P .  The solution there 
is standard and gives, with U, = u,(O), 

‘(4.9) 

Elimination of P as in Stewartson (1970) leads ‘to the following equation for A‘: 

u“,( -;)! (4.10) 
j-: [a2AA’+cl A”(X,)  dX, 

Jw 

The parameters in (4.10) may be reduced to one by linear scaling, and it may then 

(4.11) 
be written as 

[AA’-AX, + (1 - A )  A] dX, = - 
(X,-X$ ’ 

where (4.12) 
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The conditions that A must satisfy as I X I + co are that 

A(X) x - X  as X+-co, 

A(X) x AX as X+co. 
(4.13) 

The corrections to (4.13) may be found by noting that the integrand on the left-hand 

(A+X) (A-AX)A z G ,  (4.14) 

where the constant G is different for positive and negative X. Thus (4.13) may be 
augmented as in (1.4). The contribution to (1.4) forced by the right-hand side of (4.1 1) 
is O( 1 XI-:), and is thus more important than the term in r- in ( 1 . 4 ~ )  if A > g, and 
more important than the term in r+ in (1.46) if A < $. I n  the situation of I, which 
corresponds to A = 1, the constants r* were equal and denoted by r. Equation (4.1 1) 
may be rewritten in either of the following forms : 

side of (4.11) must tend to zero both as X+&co. This implies that as I X l+co 

gr- x, O0 A"(X,) dx, X 

dX1 = s, (X,-X)i 
A'--'+ 

( 4 . 1 5 ~ )  
or, equivalently, 

The asymptotic forms of A do not permit a constant of integration to  be added 
to either left-hand side except in the case A = 1 of I, to  which (4.15u, b) both reduce 
as A+l .  The constants r+ are related, since the left-hand sides of (4.15u, b) must 
be equal for all values of X; in particular with X = 0, 

= A r +  -2(1-A) A-AX,+ Y+ Xl 
(1 +XI) i ( l /A+l , )  dX,. (4.16) 

5. The numerical solution of the integral equation 
Some feeling for the solution of the integral equation is given by its solution when 

both r+ - are large and negative. This is given by neglecting the right-hand side of 
(4.15), which leads to (l.l), the solution of which is ( 1 . 2 ~ )  with GI > 0. From this 
we obtain 

(5.1) 

with the result that r+ and r- are equal as required when A = 1. In  this solution 
A is always positive and tends to its linear asymptotes from above as I X I + a, and 
if A = 0(1) the profile is reasonably symmetric about X = 0. To obtain a separated 
profile in which the skin friction is negative for a finite range of X, either r+ or r- 
or both must increase and become positive. I n  these circumstances a numerical 
solution of (4.15) is required, and this has been carried out for A = 0.75, 1.25 by the 
method described in I. The integral equation was reduced to a set of nonlinear 
algebraic equations, after A" was replaced by central differences and the integrals 

-1r 2 +  = (-1r 2 -  ) l / A ( i + ~ ) i - l / A ,  
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FIGURE 2. The (r, A(0))-plane when A = 0.76. 

FIGURE 3. The (r, A(0))-plane when A = 1.25. 

evaluated by an approximate method. For simplicity both integrals were treated the 
same way : the substitution X, = X+ t2  was made as in I and then the trapezium rule 
used. There is a choice between integrating ( 4 . 1 5 ~ )  and (4.15b), the advantage of 
(4.15b) being that the resulting matrix is almost triangular with at most two 
subdiagonals, so, apart from a few runs to check accuracy, (4.15b) was used 
throughout. 

In figures 2 and 3 we show the results of plotting r, against A(0) for the two values 
of A considered. In both figures is also shown, for comparison, the corresponding curve 
obtained in I with A = 1 ; in that case r+ = C. It will be noticed that in both cases 
the curve for r- is similar in shape to that with A = 1, and after making a small but 
definite loop is probably tending to the origin. In the case A = 1 it was possible to 
find the analytic form of r in terms of the length of the separation region as r tended 
to zero and the latter tended to infinity. Here, as explained in $6, it has not been 
found possible to find the analogous formula, though a seemingly consistent 
expression for r+ has been obtained on the assumption that C tends to zero. The 
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main difference between these results and those of I is the behaviour o f f + ,  which 
when A = 0.75 is tending to minus infinity and when A = 1.25 tends to plus infinity. 
Both these asymptotic behaviours are confirmed by the analysis of $6;  on both curves 
A(O)+O. 

The curves of figures 2 and 3 were obtained and traversed as follows. Whichever 
equation of (4.15) is used with boundary conditions (1.4) essentially one of f ,  must 
be given and the other calculated in terms of it,  either by examining the asymptotic 
form or by using (4.16). Here for example on those parts of the curve where A(0)  > 0 
it was found convenient to use (4.15b) with r+ prescribed and to  calculate r- from 
(4.16). I n  fact the method used was, for given r,, to estimate r-, solve the matrix 
equations for the values of A a t  the mesh points by Newton iteration subject to (1.4), 
recalculate I" from (4.16), re-solve the matrix equations and repeat the cycle until 
the difference between the results of consecutive cycles was less than a prescribed 
tolerance. Although, when A = 1.25, f +  decreases monotonically, so it would have 
been possible to  compute both curves by prescribing r+, i t  was found more 
convenient, as in I, to  traverse the curves by increasing X,, the position of the 
reattachment point, as soon as X, sensibly existed. As X, increased, and the region 
of reversed flow lengthened, the profiles for both values of A became increasingly 
non-symmetric, and as in the case A = 1 the limit solution for X < X, seemed to be 
A ( X )  x -X for X < X,, with a rapid increase from -X, to X, in the neighbourhood 
of this point. 

Some indication of the values of X, at various points of the curves of figures 2 and 
3 is required. When A = 0.75, r+ reaches a maximum of approximately 2.21 where 
A(0)  x 0.07 and X, x 0.93. The maximum value of C,  approximately 2.33, does not 
occur until X, x 1.9, with A(0)  x -0.91. When A = 1 the corresponding values given 
in I were r,,, = 2.76, with A(0)  x -0.56 and X, x 1.63. Thus when A < 1 neither 
r+ nor K achieves such a large maximum as when h = 1, though A(0)  has a lower 
minimum, as can be seen from figure 2. The part of the small loop in the curve of 
A ( 0 )  against C that  is drawn here extends from 2.6 < X, < 8.5, i.e. for this range 
of X ,  there are clearly four values of A(0)  for given r-. I n  these integrations i t  is felt 
that  graphical accuracy has been achieved especially in that runs were made with 
600 points in addition to  those with 300 and 150 as in I. In  general the range in X 
was ( -  10, lo), though this, as in I, was lengthened, scaled and moved to the right 
as the separation length X, became large. However, even with this refinement it was 
not found possible to increase X, beyond about 9.0, a t  which value the profile for 
A ( X )  developed small oscillations near X = 0. This did not occur in I for the case 
of A = I ,  but i t  is possible that the added difficulty here is caused by the large value 
o f f + ,  which by then had reached - 100. The profile A ( X )  was approaching - X  for 
X < X, as in I, and the variations in this neighbourhood were large. An extension 
to the right in figure 2 would show that on the lower branch of the curve f +  +- 00 

and A(O)+O in an oscillatory manner as X,+ oc). By the time f +  = - 1.0 on this 
branch, X, x 2.05, and the asymptotic form for r+ as a function of X, is given in $6. 

For A = 1.25 the plot of A(0)  against r- is similar to that for A = 0.75, though the 
small loop is now further from the origin. The maximum value of f -  is approximately 
3.80, with A(0)  x -0.36 and X, x 1.33. On the small loop 3.1 < X, < 8.5, and again 
the results become unreliable at X, = 9.0, with small oscillations developing in A ( X )  
near X = 0;  by this time the value of r+ was approximately -25. Near the limit of 
the plot of figure 3 we have r+ x 5.73, with X, x 3.2, and continuation of the graph 
to the left would show that f + + +  00 and A ( 0 ) + 0  as X o +  00. Again the profiles are 
approaching - X for X < X, ,  and the asymptotic limit is also examined below. 
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6. The limit solutions as Xo+ co 
For both values of h under consideration, the numerical solutions indicate that, as 

X, ,  the position of the reattachment point, is tending to infinity, A ( X )  is approaching 
a limit solution. This situation appears to be very like that described in I for the case 
h = 1 in that the position of the separation point is tending to X = 0 from below and 
that A ( X )  is approaching -X for X < X,. Also, in the neighbourhood of X = X,, 
A ( X )  seems to jump from -X, to X,, though, unlike the case h = 1,  A ( X )  does not 
appear to be linear for X > X,. In addition, i t  appears that C is tending to zero from 
above for both values of A,  but that r, tends to - 00 for h = 0.75 and to + 00 for 
A = 1.25. The analysis below confirms these tendencies and gives formulae for r+ that 
are in good agreement with the numerical predictions, though we have been unable 
to obtain formulae for r-. It emerges that in the immediate neighbourhood of X, the 
limit solution is exactly that described in I. 

The formulae for f.+ are found quite easily for both A < 1 and A > 1. In  each case 
we assume that, for X < X,, A ( X )  x - X ,  but for X > X, ,  A ( X )  % A J X ) ,  where 

( A , + X ) ( A , - h X ) A  = 9, for h < 1 ,  (6.1) 

( A , + X )  (AX-A,)A = gz for A > 1, (6.2) 
where 9, and gz are constants. The expressions (6.1) and (6.2) satisfy (4.15) with the 
right-hand sides set equal to zero, and lead to a relative error O ( X 3 )  which is 
calculated below. If, as is indicated by the numerical work, A ( X )  increases from -X, 
to X, in the neighbourhood of X, ,  then we have immediately that 

g1 = 2Xi+A(l -h)A ( A  < l),  

gz = 2Xi+”h- 1 ) A  ( A  > 1).  

But (6.1) and (6.2) also yield r+ in terms of gl and gz, with the result 

so that r+ + 00 if h > 1 ,  but r+ +- co if h < 1. There is no oontradiction with the 
case h = 1 of I, in which r+ + 0 as X, + 00, though clearly the double limit requires 
further investigation if it  is thought to be of interest. A comparison between the 
formula (6.4) and the computed results is given in table 1.  The agreement is quite 
remarkable in view of the expected error in the asymptotic form (6.4), of relative order 

In  I, r+ = r-( = I), and a formula for r was obtained on the following lines. Here 
a similar approach is not so rewarding, and we do not obtain a formula for r-. 
Essentially i t  is the extra integral in (4.15) that prevents this, for to evaluate C ,  from 
( 4 . 1 5 ~ )  say, we need to know by how much A ( X )  differs from -X for X < X ,  in order 
to perform the integral over the infinite range. However, the argument below does 
give an asymptotic formula for A(0)  on the lines of that found in I, and also leads 
to the form of the limit solution in the neighbourhood of X = X,. We note that the 
assumption A ( X )  z - X for X < X, implies the assumption that C + O  as X, + co . 
The contribution O(X;i)  to the integral on the right-hand side of (4.15) is required, 
and this is obtained, when X < X, ,  both from the neighbourhood of X, = X ,  and for 
values of X, > X, ,  where A,(X, )  is given by (6.1) or (6.2). Thus, for X < X , ,  

O(X,i) .  

A,”(X,) dX, 
( X , - X ) ?  ’ 

co A”(&) dX, 
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A = 0.75 A = 1.25 

xo r + N  r+AS r + N  r + A S  

4.0 - 15.53 - 15.17 7.20 5.52 
4.4 - 19.00 - 18.95 8.24 6.55 
4.8 -23.48 - 23.22 9.33 7.66 
5.2 - 28.69 -27.99 10.48 8.85 
5.6 -34.22 - 33.27 11.70 10.11 
6.0 - 40.06 - 39.08 13.00 11.45 
6.5 -48.09 -47.11 14.74 13.22 
7.0 -57.02 - 56.00 16.60 15.11 
7.5 - 66.82 -65.78 18.56 17.11 
8.0 - 77.47 - 76.47 20.64 19.21 
8.5 -89.01 - 88.09 22.83 21.43 

TABLE 1. Values of r+ as calculated from the numerical solution of the integral equation 
(suffix N) and from the asymptotic formula (6.4) (suffix AS) for A = 0.75, 1.25 

A = 0.75 A = 1.25 

xo 
4.0 
4.4 
4.8 
5.2 
5.6 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 

A N @ )  
+0.010 
-0.086 
-0.169 
-0.161 
-0.117 
-0.090 
-0.087 
-0.082 
-0.076 
-0.072 
-0.080 

A A S ( 0 )  
-0.193 
-0.167 
-0.147 
-0.130 
-0.117 
-0.105 
-0.093 
-0.083 
-0.075 
-0.068 
-0.062 

A N ( O )  
- 0.035 
-0.086 
-0.114 
-0.103 
- 0.079 
- 0.066 
-0.062 
-0.058 
-0.053 
- 0.050 
-0.054 

A A S W  

-0.134 
-0.116 
-0.102 
-0.090 
-0.081 
-0.073 
- 0.065 
-0.058 
-0.052 
-0.047 
-0.043 

TABLE 2. Values of A ( 0 )  as calculated from the numerical solution of the integral equation 
(suffix N) and from the asymptotic formula (6.7) (suffix AS) for A = 0.75,1.25 

where the first two terms are obtained by integrating by parts and noting, from (6.1) 
and (6.2), that A' jumps from - 1 to  2h- 1 as A jumps from -X, to X,. Differ- 
entiation of either of (4.15a, b) then leads to a formula for X,, the separation point 
where A ( X , )  = 0, and we have, since I X, I 4 1, 

2h+3 1 O' A,"(X,)dX, 
= 4=i"b+z 6,, x"l 

Both terms on the right-hand side are O(X;g),  and the integral has been evaluated 
numerically when h = 0.75 and h = 1.25 by use of (6.1)-(6.3). The results are that 

X ,  = -1.545X;: ( A  = 0.75), X ,  = -1.070X3 ( A  = 1.25); (6-7) 

when h = 1.0 the result in I is that X ,  = - 1.25X;t. 
In  table 2 we present a comparison between X, as calculated from (6.7) and A(0)  

(since A ( X )  z - X + X ,  near X = 0) as given by the numerical integration of the 
integral equation. We know from the calculations leading to  figures 2 and 3 that A(0)  
oscillates about its asymptotic form? and this can be seen in table 2. When h = 0.75 
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. ., " 

The broken line is the limit solution B(g) as calculatedin I. 

FIGURE 5. The function A ( X ) / X ,  versus 5 for various values of X,, with h = 1.25. 
The broken line is the limit solution B(6) as calculated in I. 

the small loop of figure 2 extends from 2.6 < X, < 8.5 approximately, and when 
A = 1.25 the corresponding range is 3.1 < X, < 8.5. For both values of A there 
appears t o  be another oscillation commencing at X, x 8.0, but i t  is difficult to be 
certain about this as the numerical method became inadequate for both values of h 
by the time X, reached 9, as noted in $5.  

To examine the limiting form of A in the neighbourhood of X = X, we write, in 
the differentiated form of (4.15), A ( X )  = X,B(c) ,  g = ( X - X , ) G .  Retention of the 
leading terms for X, B 1, and integration with the condition B( 00)  = 1, so that 
B( 00)  = A(X,  + O)/X, ,  then shows that B satisfies the limiting integral equation of I .  
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Some properties of this integral equation were given there, and the existence of 
an eigensolution for large negative 5 that explained the oscillations of A(0)  and r 
about their asymptotic forms was demonstrated. This limiting solution, for A ( X ) / X ,  
as a function of 5, is shown in figures 4 and 5 together with the results for X, = 2,4 ,8  
for A = 0.75,1.25 and, in addition, for X, = 6 when A = 1.25, when the approach to 
the limit is marginally slower. 

7. Discussion 
The phenomenon of marginal separation occurring on the line of symmetry of a 

paraboloid at incidence can be clearly seen from figure 4 of Cebeci et al. (1980). When 
the angle of incidence a, = 40' the streamwise component of skin friction becomes 
very small at a point on the leeward line of symmetry before recovering again to 
positive values (it is the authors' definition of coordinates that makes it convenient 
for them to plot the wall shear as a negative quantity). Indeed, a t  a, = 41' the 
separation is no longer marginal and its position terminates the computation. It is 
evident from their figure 4 that the downstream (increasingly negative p in their 
notation) gradient of the skin friction is less than the upstream gradient; this 
corresponds to the situation h < 1 of the present study. Confirmation of this is 
provided by their figure 7, in which the authors plot the crossflow velocity (w being 
defined in the sense of 0 increasing), from which i t  follows that the configuration is 
one of outflow from the line of symmetry, i.e. c1 > 0. Since T J T ~  = 1 - C J T ~  (= A )  
the two results are consistent with the theory given here. 

In  the case A < 1 both r, are bounded above by a positive number. Indeed the 
non-zero crossflow has limited the parameters r, , as we have seen, even more than 
in the two-dimensional case; this in a sense is-not surprising, as the incipiently 
separating boundary layer is being emptied of its fluid by the crossflow. I n  addition, 
as the separation bubble increases in length ( X ,  + a), r+ tends to minus infinity, so 
that the flow downstream of the interaction must be well and truly attached in that 
the skin friction is above its Goldstein value of AX, though i t  should be noted that 
when A < 1 the effect of the interaction region is, in terms of Reynolds number, less 
on the downstream flow than i t  is on the upstream flow. 

The situation A > 1 corresponds to  inflow on the line of symmetry, and, although 
C is bounded above, r+ tends to  infinity with the length of the reverse-flow region. 
Thus the flow downstream of the interaction region can support a skin friction that 
is below marginal, and the interaction has had a profound effect on the downstream 
flow. Inflow on the line of symmetry occurs in the collision process on the inner 
generator of flow in a curved pipe as considered by Stewartson & Simpson (1982) and 
on the leeside of a cone at incidence (Cebeci et al. 1983), and it may be that a solution 
similar to that given here has some relevance in such situations. However, as the 
second example is for supersonic flow and in neither case is the singularity of Goldstein 
form, it is not clear that  the comparison is a valid one. Even if it were, probably not 
too much importance should be attached to the fact that  r, can now tend to plus 
infinity, because of the possibility of the existence of a singularity a t  a point just off 
the line of symmetry. The fact that  the interaction considered here is essentially 
two-dimensional precludes this, and the limitations of such a theory must be borne 
in mind. 

This work was suggested to  me some time ago by Keith Stewartson, and I dedicate 
i t  to him with my thanks. I am grateful also to Stephen Cowley for his constructive 
criticism. 
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